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Inferring the internal interaction patterns of a complex dynamical system is a challenging problem.
Traditional methods often rely on examining the correlations among the dynamical units. However, in
systems such as transcription networks, one unit’s variable is also correlated with the rate of change of
another unit’s variable. Inspired by this, we introduce the concept of derivative-variable correlation, and use
it to design a new method of reconstructing complex systems (networks) from dynamical time series. Using
a tunable observable as a parameter, the reconstruction of any system with known interaction functions is
formulated via a simple matrix equation. We suggest a procedure aimed at optimizing the reconstruction
from the time series of length comparable to the characteristic dynamical time scale. Our method also
provides a reliable precision estimate. We illustrate the method’s implementation via elementary dynamical
models, and demonstrate its robustness to both model error and observation error.

M
odern world relies heavily on complex interconnected systems, such as Internet and social media or
transport and communication networks. In addition to technological utilities, complex systems are
found on various scales in nature and society: gene regulation, protein and metabolic networks, food

webs, economic and social networks, climate. Among the foremost problems here is the development of methods
for reconstructing the structure (topology) of real networks from the observable data. Topology, in combination
with the inter-unit interactions, determine the function of complex dynamical systems (networks)1.
Reconstruction methods are often developed within the contexts of particular fields, relying on domain-specific
approaches. These include gene regulations2–5, metabolic systems6, neuroscience7, or social networks8. On the
other hand, theoretical reconstruction concepts are based on paradigmatic dynamical models such as phase
oscillators9–12, some of which have been experimentally tested13,14. In a similar context, techniques for detecting
hidden nodes in networks are being investigated15. A class of general reconstruction methods exploit the time
series obtained by quantifying the system behaviour. Some of them assume the knowledge of the internal
interaction functions16,17, while others do not18. Network couplings can be examined via an information-theoretic
approach19. The advantage of these methods is that they are non-invasive, i.e. require no interfering with the on-
going dynamics.

Reconstruction methods are often based on examining the dynamical correlations among the system units
(network nodes)12. On the other hand, models of complex dynamical systems such as Eq.1, are usually based on
expressing the time derivative of a node as a combination of a local and a coupling term. Inspired by this, we
propose a non-invasive reconstruction method, relying on the concept of derivative-variable correlation. Our
method assumes the dynamical time series to be available as measured observables, and the interaction functions
to be known. We present our theory in a general form, extending our initial results20. As we show, our approach
allows for the reconstruction precision to be estimated, indicating the level of noise in the data, or possible
mismatches in the knowledge of the interaction functions.

Results
The reconstruction method. We consider a general complex network consisting of N nodes, described by their
dynamical states xi(t). Its time evolution is governed by:

_xi~fi xið Þz
XN

j~1

Ajihj xj
� �

, ð1Þ

where the function fi represents the local dynamics for each node, and hj models the action of the node j on other
nodes. The network topology is encoded in the adjacency matrix Aji, specifying the strength with which the node j
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acts on the node i. We assume that: (i) the complex system evolves
according to Eq.1, (ii) the interaction functions fi and hj are precisely
known, and (iii) a discrete trajectory consisting of L values xi(t1), …,
xi(tL) is known for each node. The measurements of xi are separated
by the uniform observation interval dt defining the time series
resolution. We seek to reconstruct the unknown adjacency matrix
Aij ; A under these assumptions.

The starting point is to define the following correlation matrices,
using the observable g(x) whose role will be explained later:

B ~ g xið Þ _xj
� �

,

C ~ g xið Þfj xj
� �� �

,

E ~ g xið Þhj xj

� �� �
,

ð2Þ

where Æ?æ denotes time-averaging rh i~ 1
L

XL

m~1
r tmð Þ. Inserting

into the Eq.1, we obtain the following linear relation between the
correlation matrices:

A~E{1: B{Cð Þ, ð3Þ

which is our main reconstruction equation, applicable to any system
with dynamics given by Eq.1. Time series are to be understood as the
available observables, allowing for matrices in Eq.2 to be computed
for any g. For the infinitely long dynamical data, reconstruction is
always correct for any non-trivial choice of g. For short time series,
representing experimentally realistic scenarios, the reconstruction is
always approximate, and its precision crucially depends on the
choice of g (usually, correlations are defined as central moments with
averages subtracted – instead, we are here not interested in correla-
tions per se, but in the reconstruction according to Eq.3, for which
the subtraction of averages is not needed). To be able to quantify the
reconstruction precision, we need to equip ourselves with the
adequate measures. To differentiate from the original adjacency
matrix A, we call the reconstructed matrix Rij ; R, and express the
matrix error as:

DA~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
ij Rij{Aij

� �2P
ij A2

ij

vuut : ð4Þ

Of course, each R is computed according to Eq.3 in correspondence
with the chosen g. However, since the matrix A is unknown, we have
to introduce another precision measure, based only on the available
data (time series and interaction functions). A natural test for each R
is to quantify how well does it reproduce the original data xi(tm). We
apply the following procedure: start the dynamics from xi(t1) and run
it using R until t 5 t2; denote thus obtained values yi(t2); re-start the
run from xi(t2) and run until t 5 t3, accordingly obtaining yi(t3), and
so on. The discrepancy between the reconstructed time series yi(tm)

and the original xi(tm) is an explicit measure of the reconstruction
precision, based solely on the available data. We name it trajectory
error DT, and define it as follows:

DT~
1
N

XN

i~1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xi{yið Þ2

� �
xi{ xih ið Þ2

� �
s

: ð5Þ

Different choices of the observable g lead to different R, with different
precisions expressed through errors DT and DA. As we show below,
these two error measures are related, meaning that small DT suggests
small DA. The function g hence plays the role of a tunable parameter,
which can be used to optimize the reconstruction. By considering
many R-s obtained through varying g, we can single out R-s with the
minimal DT to obtain the best reconstruction.

Implementation of the method. To illustrate the implementation of
our method, we begin by formulating a complex dynamical system as
a network with N 5 6 nodes. 17 directed links, modelling inter-node
interactions, are put between randomly chosen pairs of nodes. We
examine two different examples of interactions. As our first example,
we consider the Hansel-Sompolinsky model, describing the
dynamics of firing in neural populations21. It is defined by the
interaction functions fi 5 2x and hj 5 tanh x which are fixed for
all nodes. The adjacency matrix is specified by assigning positive and
negative weights to the links, randomly chosen from [210, 10], as
shown in Fig. 1a. Weights model the varying strengths of interaction.
Starting from random initial conditions, the resulting system is
integrated from t 5 0 to t 5 4. During the run, 20 values of xi are
stored for each node, equally spaced with dt 5 0.2. The obtained time
series, shown in Fig. 2, are rather short compared to the characteristic
time scale and the system size.

We now use these data to reconstruct the original adjacency
matrix by employing the procedure described above. We consider
a set of 104 test-functions g, each composed of first 10 Fourier har-
monics

g xð Þ~
X10

k~1

ak sin kxð Þzbk cos kxð Þ½ �: ð6Þ

The coefficients ak and bk are randomly selected from [0, 100] with
the log-uniform probability (to emphasize smaller coefficient
values). This is implemented by selecting each Fourier coefficient
via 102.004321373rand 2 1.0, where rand is a random number between
0 and 1. A typical function thus constructed for each choice of ak and
bk will have all 10 Fourier components, but one (or at most few) will
be well pronounced. Functions are then normalized to the range of
time series values. Given relatively smooth time series, lower har-
monics are expected to generally extract more features from data,
which is why we limit ourselves to the first 10 harmonics. To improve
the stability of the derivative estimates, we base our calculations on
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Figure 1 | Adjacency matrices of two examined dynamical networks. Adjacency matrix A for the first example (a), and the second example (b).

Colorbars (shades) indicate the interaction strength. Two different colorbars in (b) stand for two different interaction types (see text).
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the set of time points tm 5 (tm11 2 tm)/2. For each g, the matrix R is
obtained via Eq.2 and Eq.3, with the invertibility of each E checked by
virtue of the singular value decomposition. The errors DT and DA are
then calculated for each R, and reported as a scatter plot in Fig. 3a.

The main result of this analysis is a clear correlation between DT

and DA, particularly pronounced for smaller values of errors. This
confirms that the best R are among those that display minimal DT. In
order to identify the best reconstruction and estimate its precision,
we focus on the 1% of matrices R with the minimal DT, as illustrated
in Fig. 3a by the dashed vertical line. The variability of R within this
group can be viewed as the reconstruction precision. Small variability
indicates the invariance of R to the choice of g, which suggests a good

reconstruction. Large variability of R implies its drastic dependence
on g, indicating a bad precision. We quantify this by computing the
mean and the standard deviation for each matrix element of R within
this group, and identify them, respectively, with the best reconstruc-
tion value and its precision. In Fig. 4a we report the original A and the
best reconstruction, along with the respective errorbar for each
matrix element, describing the reconstruction precision. The recon-
struction is indeed very good for both zero and non-zero weights (i.e.
for non-linked and linked node pairs).

Our second example of node dynamics is a model describing gene
interactions, with the coupling functions of two types: activation
hz

j ~x5
�

1zx5
� �

and repression h{
j ~1

�
1zx5
� �

22. Local inter-
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Figure 2 | An example of timeseries. Time series for all 6 nodes produced by the network Fig. 1a (black dots). Bars denote the added white noise of

strength g 5 0.4 (see text, cf. Fig. 5a).
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Figure 3 | Scatter plots of errors DT vs. DA. Scatter plots of errorsDT andDA, in relation with the first and second example, in (a) and (b), respectively. Best

1% of R-s with the minimal DT, are represented by the dots left of the vertical dashed line.
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action are again modeled via fi 5 2x. The adjacency matrix is based
on the same network, and defined by assigning a random weight
from [0, 1] for each link, as shown in Fig. 1b. The nodes 1–3 (respect-
ively, 4–6) act activatorily (repressively) on all nodes that they act
upon. Again, we run the dynamics from t 5 0 to t 5 4, obtaining
another set of time series with 20 points (not shown). The same
reconstruction procedure is applied, yielding the DT vs. DA scatter
plot shown in Fig. 3b. Using the same procedure, we obtain the best
reconstruction and show it in Fig. 4b. The precision is again very
good, although the relationship between DT and DA is now different,
since the two examined systems display different degrees of non-
linearity. This shows that our method applies even in cases of
strongly non-linear interaction functions, which capture most real
dynamical scenarios.

Testing the method’s robustness. In order to model the real applica-
bility of our method, we test its robustness to possible violations of
the initial assumptions, focusing on the first dynamical example
(Fig. 1a). We start with the scenario when the interaction functions
are not precisely known – we assume a small mismatch in their
mathematical form (model error). Instead of the original fi 5 2x
and hj 5 tanh x, we take fi 5 21.1x and hj 5 tanh(1.1x) 1 0.1x.
The measurements of DT now cannot be expected to converge to
zero. Nevertheless, we apply the same procedure, and find (a
weaker) correlation between DT and DA, as shown (by black dots)
in Fig. 5a. To see the worsening of the precision clearly, grey dots
show the original non-perturbed scatter plot from Fig. 3a. Dashed
vertical line shows the part of the error DT which is unavoidable due
to the presence of the perturbation. We compute it by averaging the
difference between the original and the perturbed interaction
functions over the y-range of the time series (for the function h we

average
tanh xð Þ{tanh 1:1xð Þ{0:1x

x
over the y-range of the time

series, and equivalently for the function f; since the two
contributions can not be simply added, we consider only the larger
one, in this case h, which gives the lower bound on such error). Such
error is not related to the performance of our method, so we show it
in the figure in order to isolate more clearly the part of the error that
in fact arises from our method. The remaining DT is similar to the DT

occurring in the non-perturbed case. This demonstrates that our
method works even under perturbed conditions. The worsening of
the reconstruction precision is what expected from the nature of the
perturbation, meaning that our method makes no additional
‘‘unexpected’’ errors in the perturbed conditions. The best
reconstruction and the corresponding errorbars are computed as
before and shown in Fig. 6a. The errorbars are larger and the
reconstruction precision worsens. Still, the essential fraction of
elements of A are within the respective errorbars. The decline of
precision is controllable, since it is clearly signalized by the size
of the errorbars. This could be used to generalize the method in
the direction of detecting the interaction functions as well. Each
best R would be accompanied by the best guesses for fi and hj,
meaning that different network topologies, reproducing the data
equally well, would come in combination with different fi and hj.

To test the third assumption of our theory, we take the time series
to be not precisely known due to observation errors. Uncorrelated
white noise of intensity g 5 0.4 is added, perturbing each value of the
time series. Instead of the original data, we now consider one real-
ization of the noisy data, as illustrated in Fig. 2 (interaction functions
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Figure 4 | Network reconstruction with errorbars. Elements of the
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Figure 5 | Scatter plots of DT vs. DA for model and observation error scenarios. Scatter plots of errors DT and DA (black dots), for the model error

scenario in (a) and the observation error scenario in (b). Original non-perturbed scatter plot from Fig. 3a is shown in gray for comparison. Vertical dashed

lines depicts the part of the DT error which is unavoidable in the presence of the perturbation (see text).
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are the original ones). The central problem now is the computation of
the derivatives, which are extremely sensitive to the noise. We
employ the Savitzky-Golay smoothing filter23 as a standard tech-
nique of data de-noising, which allows for a good derivative estima-
tion. Since the time series are short, we apply the smallest smoothing
parameters (polynomial degree 2, window size 2). The reconstruc-
tion procedure is applied as before, using smoothed derivatives to
compute matrix B in Eq.2. The scatter plot of DT vs DA is shown in
Fig. 5b, again compared with the original plot, and with the perturba-
tion-induced unavoidable error indicated by the vertical line (com-
puted as before, this time averaging the perturbation value over the
y-range of the time series). The worsening of the precision is of a
similar magnitude as in the model error scenario. The best recon-
struction and the corresponding errorbars are reported in Fig. 6b.
Note that the precision is again correctly captured by the size of the
errorbars. In two cases from Fig. 6, the precision does not decline
uniformly for all links. The analysis above shows that our reconstruc-
tion method is reasonably robust to both model and observation
error. We found this robustness to be qualitatively independent of
the realization of both these errors.

Discussion and Conclusions
We presented a method of reconstructing the topology of a general
complex dynamical system from the time series with known inter-
action functions. Through conceptually novel approach, our method
is formulated as an inverse problem using linear systems formalism24.
Rather than relying on the correlations between the observed variables,
it is based on the correlations between the variables and their time
derivatives. Our method involves two important factors: it applies to
the data that is relatively short, i.e. of the length comparable to the
system size and to the characteristic time scale; and, it yields the error-
bars as a by-product, correctly reflecting the reconstruction precision.

On the other hand, our theory relies on knowing (at least approxi-
mately) both the dynamical model Eq.1 and the interaction func-
tions. While these assumptions might limit the immediate

applicability of our method, our idea presents a conceptual novelty,
potentially leading towards a more general and applicable recon-
struction method. For example, we expect applicability in studies
of interacting neurons in slices or cultures, where the properties of
the individual neurons (i.e. functions f and h) can be relatively well
established, while the adjacency matrix is unknown. In contrast, the
application to problems such as brain fMRI activity patterns, where
even the existence of a dynamical model like Eq.1 is questionable,
appears at present not possible.

Our theory includes choosing the tunable observables g, which
allow for the reconstruction to be optimized within the constrains
of any given data. The question of constructing the optimal g which
extracts the maximal extractable information, remains open. Our
algorithm can be reiterated: once the 1% of the best R-s are found,
one can examine the functions g leading to those 1%, and repeat the
procedure, sampling only the neighboring portion of the functional
space. Alternatively, various evolutionary optimization algorithms
could be used25. An important factor for the method’s applicability
is the dynamical regime behind the time series, which could be regu-
lar and stable (for example periodic) or chaotic and unstable (starting
from general initial conditions, the transients are typically irregular).
The former case is less reconstructible, because of a poor coverage of
the phase space. In particular, synchronized dynamics, being essen-
tially non-sensitive to the variations of the coupling coefficients,
offers very little insight into the structure of the underlying system.
Increasing the time series length is obviously of no help20. In contrast,
the latter case contains more extractable system information, and is
potentially more reconstructible. Chaotic dynamics provides a better
coverage of the phase space, adding new information with increasing
length of the time series. Another issue is the applicability to large
networks N=1, and in particular, the dependence of precision on
relationship between N and L. This relates to the possibility of quan-
tifying the network information content of the available data.

Another limitation of our theory comes from the form of Eq.1. A
similar theory could be developed for alternative scenarios, such as h
specified by both source and target nodes. The real challenge here are
the networks with non-additive inter-node coupling (i.e., the dynam-
ical contribution to the node i is not a mere sum of neighbours’
inputs). The key practical problem is that the mathematical forms
of f and h are not (precisely) known for many real networks, although
for certain systems they can be inferred with a reasonable confid-
ence4,5. Noise always hinders the reconstruction, specially via deriv-
ative estimates. However, longer time series not only bring more
information, but also allow for a better usage of smoothing.
Finally, we note that the network reconstruction problem is ‘‘oppos-
ite’’ of the network design problem. Our method could be employed
to design a system that displays given dynamics. However, while any
system with DT^0 solves the design problem, in the reconstruction
theory this creates the permanent issue of isolating the true system
among those that exhibit DT^0.

Finally, we note that the comparison among the methods aimed at
inferring the internal structure of dynamical systems is of great
interest. Besides providing a consistent evaluation of the perform-
ance of various methods, such comparison could help one choose the
most suitable method for a given problem. However, the initial hypo-
theses for various methods are very diverse, which makes the object-
ive comparison among them very hard, at least at the moment.
Directly applicable methods3,18 rely on experimentally realistic
assumptions, but often perform poorly. Theoretical reconstruction
ideas (such as the present or9–12) are based on stronger assumptions
and show better performance, although their concrete applicability is
for now limited. Nevertheless, this remains an important and inter-
esting avenue for future work.
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17. Džeroski, S. & Todorovski, L. Equation discovery for systems biology: finding the
structure and dynamics of biological networks from time course data. Curr. Opin.
Biotech. 19, 360–368 (2008).

18. Hempel, S. et al. Inner Composition Alignment for Inferring Directed Networks
from Short Time Series. Phys. Rev. Lett. 107, 054101 (2011).

19. Pompe, B. & Runge, J. Momentary information transfer as a coupling measure of
time series. Phys. Rev. E 83, 051122 (2011).
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