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Phase resetting curves characterize the way a system with a collective periodic behavior responds to per-
turbations. We consider globally coupled ensembles of Sakaguchi-Kuramoto oscillators, and use the Ott-
Antonsen theory of ensemble evolution to derive the analytical phase resetting equations. We show the final
phase reset value to be composed of two parts: an immediate phase reset directly caused by the perturbation
and the dynamical phase reset resulting from the relaxation of the perturbed system back to its dynamical
equilibrium. Analytical, semianalytical and numerical approximations of the final phase resetting curve are
constructed. We support our findings with extensive numerical evidence involving identical and nonidentical
oscillators. The validity of our theory is discussed in the context of large ensembles approximating the ther-
modynamic limit.
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I. INTRODUCTION

The behavior of many biological systems displays rhyth-
mic patterns that can be globally described through a peri-
odic phase variable �1�. Examples are found on a variety of
time-scales and levels of complexity: pulsating neurons, cir-
cadian clocks in living beings, seasonal dynamics, etc. �1–3�
The response of a periodic system to stimuli can be charac-
terized by measuring the phase shift occurring as a result of
a stimulus, i.e., by quantifying the difference between the
collective phases of the perturbed and the original system.
The phase shift’s dependence on the phase value at which the
perturbation occurred is termed phase resetting curve �or
phase response curve, PRC�, and is an inherent characteristic
of any oscillatory system �4,5�. Study and applications of
PRCs are currently receiving a growing attention through
their theoretical and experimental aspects �2,3�.

Periodic biological systems are often composed of many
interacting units, whose collective behavior emerges from
the dynamical properties of the single units �2�. The collec-
tive �macroscopic� phase response of an empirical oscillator
is generated from stimuli that act on the level of individual
�microscopic� units, and composed of their individual phase
responses.

In the context of neural oscillations various methods have
been developed for the empirical measurement of PRCs,
both in vivo and in vitro. The methods depend on the type or
the size of the neural ensemble, and typically involve electric
stimulation of neurons that induce a measurable phase shift
in their spiking behavior �2,6,7�. Recently, the epileptiform
activity in rats was characterized through experimental
PRCs, obtained by stimulating thalamus and cortex of epi-
leptic animals during spike and wave seizures �8�. Investiga-
tion of PRCs is relevant for understanding the interaction
properties of the neural networks, such as their stability �7�,
or synchronization and clustering �9�. The assumption of
weak interneuron coupling was experimentally tested via in-
finitesimal PRCs �10�. A new technique of PRC construction
from data, based on weighted spike-triggered averaging was
recently proposed �11�. While mostly studied in the domain
of neurons, PRCs are also explored in other natural rhythmic

systems, that can be modeled as ensembles of many oscilla-
tory elements. An empirical and theoretical examination was
thus conducted in coupled circadian clocks of insects �12�,
and the periodically driven saline oscillator �13�.

Due to its global periodic behavior, dynamics of neurons
or oscillators and the resulting PRCs can be easily studied
analytically or modeled computationally �2,6,14�. On the
level of few neurons, extensive analytical results including
bifurcation diagrams are available for various neuron models
and types of interaction �7,8,14,15�. On the other hand, glo-
bal cooperative behavior in large neuron ensembles is typi-
cally examined numerically by modeling single elements as
simple phase-oscillators. In this context, Kuramoto-type os-
cillators �4� are usually employed for their elegant and useful
synchronization properties �16�, which are well understood
for various topologically and structurally different networks
�17,18�. A recent study of the phase response of stochastic
oscillators revealed the interplay between microscopic and
macroscopic collective phase sensitivity, for ensembles of
globally coupled �19�, and network coupled elements �20�.
Phase resetting in globally coupled ensembles of oscillators
was investigated in relation to the symmetry properties of the
coupling function �21�, emphasizing the peculiarity of non-
odd coupling functional forms. PRCs were also constructed
for models involving pulse-coupled neurons, providing in-
sights into their interaction details and collective dynamics at
small �22� and large scales �23�. Phase response behavior of
complex oscillator networks, besides giving insights into
their interaction patterns �9,24�, can also assist in revealing
the details of their network connectivity �25�.

While the PRCs of a single �or few� oscillators are very
well understood �4,6,7,15�, the results for ensembles of os-
cillators are still rather scarce and often limited to numerical
investigations only �3,20,21�. Namely, the difficulty here is
that there are two contributions to the phase resetting. Apart
from the phase shift immediately caused by the perturbation,
the relaxation of the ensemble into a stationary state may
induce an additional �potentially significant� phase shift,
since any finite stimulus in general perturbs the system out of
its equilibrium.

In this paper we consider a globally coupled ensemble of
Sakaguchi-Kuramoto oscillators �26�, interacting via a non-
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odd coupling function. The system is perturbed from its dy-
namical equilibrium by applying the kick �of controllable
form and strength� to the individual oscillators. We employ
the Watanabe-Strogatz ansatz �27� in the recently proposed
Ott-Antonsen �OA� formulation �28�, and calculate analyti-
cally the effect of the relaxation of system’s collective phase.
As we show, an additional phase reset is induced, and its
properties can be obtained from the state of ensemble mea-
sured immediately after the perturbation. We confirm our
theoretical results through a series of numerical simulations,
considering both identical and nonidentical oscillators. The
extent of our theory is illustrated by considering the phase
resetting in an ensemble of Stuart-Landau oscillators.

In opposition to �19,20�, here we consider deterministic
oscillators and perturbations of arbitrary strength �not infini-
tesimal�, thus allowing the exploration of the phase reset’s
time evolution.

This paper is organized as follows: in Sec. II we formulate
our model of the kicked oscillator ensemble, define the con-
cept of phase resetting, and describe our implementation of
perturbation. In Sec. III we show some analytical results re-
garding calculation of the immediate PRC. In Sec. IV we
derive our main analytical result based on OA theory, for a
general case of nonidentical oscillators. We test our theory in
Sec. V by exposing our numerical results for various oscil-
lator ensembles and types. We discuss our results and con-
clude in Sec. VI.

II. FORMULATION OF OUR MODEL

In this section we construct our system of globally
coupled oscillators and define the concept of phase resetting
curve for the ensemble. We describe the implementation of
the perturbation �kick� in response to which the PRC is mea-
sured.

A. Ensemble and its description

We consider an ensemble of N oscillators characterized by
their natural frequencies �k, whose dynamical states are de-
fined by their phase values �k� �0,2��. Oscillators are glo-
bally coupled using Sakaguchi-Kuramoto scheme with the
interaction strength ��0 and phase shift �� �− �

2 , �
2 �,

�̇k = �k +
�

N
�

j=1,N
sin�� j − �k + �� + q��k;a�k���t − T� . �1�

The oscillator �k undergoes a kick at time t=T, whose prop-
erties are given through the function q, which in general
depends on the phase �k and a set of parameters summarized
in a�k. We take q to have a simple form as follows:

q��;a�� = q��;A,	� = A sin�� + 	� , �2�

where A is the kicking strength, and 	 is a phase shift pa-
rameter. The collective dynamical state of the ensemble is
quantified through the complex mean field �complex order
parameter� Z defined as

Z =
1

N
�

k=1,N
ei�k = �ei�� = Rei
,

where � · � stays for the average over ensemble. We call its
absolute value R= �Z� the collective radius, and its argument

=arg Z the collective phase. The ensemble’s PRC is de-
fined with respect to the collective phase 
.

We now construct an alternative formulation of the equa-
tions of our system by transforming the phase � into a uni-
tary complex variable �,

� = ei�.

Thus, the time evolution of our kicked system given by Eq.
�1� now reads

�̇k = i�k Im�i�k + �ei�Z�k
� + r��k;a�k���t − T�� , �3�

where �� is the complex conjugate of �. The functional ex-
pression for the kick r becomes

r��;a�� = r��;A,�� = A�� , �4�

where �=ei	. The complex mean field Z reads

Z =
1

N
�

k=1,N
�k = ��� .

We term this approach unitary complex representation, in
contrast to previously exposed phase representation. It trans-
forms the trigonometric expressions in our equations into the
algebraic ones, which will be of importance in our analytical
studies that follow. Throughout this paper we will be inter-
changeably using both representations.

Two types of phase-oscillator ensembles in respect to the
frequency distributions are considered:

�i� identical oscillators �k=�, whose final dynamical
state is the full synchronization �k=
 �regardless of N, �

�0 and �� �− �
2 , �

2 ��. We will examine examples of small
ensembles N� and large ensembles approximating ther-
modynamic limit N→�.

�ii� nonidentical oscillators with Lorentzian frequency
distribution g, characterized by a mean �̃ and a width �
�0,

g��� =
1

�

�

�� − �̃�2 + �2 . �5�

After relaxation this ensemble is partially synchronized �de-
pending on � and ��. Here we consider only the thermody-
namic limit N→�. The case of identical oscillators is ob-
tained for �→0+.

B. General definition of PRC for the ensemble

Consider an ensemble of N�1 oscillators governed by
Eqs. �1� and �3� whose collective dynamical state is given by
the complex mean field Z. We compare two realizations of
the ensemble, termed “original” and “kicked” system, with

time evolutions described by Z�t� and Z̄�t�, respectively �all
quantities related to the kicked system are denoted with bar�.
We assume the kicked system to be created at time t=T=0 in
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its initial state Z̄�0�= ��̄�0��= Z̄0= ��̄0� as the consequence of
the kick acting on the original system, which at time t=0 is
in its stationary state Z�0�=Z0,

Z0→
kick

Z̄0 or �
0,R0�→
kick

�
̄0,R̄0� .

After the kick, two systems independently continue their
time evolutions—original system starting from Z0 and kicked

system starting from Z̄0.
The phase resetting curve is defined as the difference be-

tween the collective phases of two systems

� = 
̄ − 
 = arg
Z̄

Z

as function of the collective phase value �of the original sys-
tem� at which the kick occurred �=��
0�. We differ be-
tween two possible PRCs, depending on the time of phase
reset measurement:

�a� We call immediate phase resetting curve �pPRC� �0
=�0�
0� the phase-shift value observed immediately after
the resetting, i.e., as the immediate consequence of the kick-
ing

�0 = 
̄0 − 
0 = arg
Z̄0

Z0
= arg

��̄0�
��0�

�6�

�we chose the abbreviation pPRC for “prompt PRC,” since
the abbreviation IPRC is in use for “infinitesimal PRC”
�10��.

�b� In contrast to pPRC, we term final phase resetting
curve �fPRC� ��=���
0� the eventual phase reset value,
measured when the kicked system relaxes to its final station-
ary state,

�� = lim
t→�

�
̄ − 
��t� = lim
t→�

arg
Z̄�t�
Z�t�

.

What we show in this paper, is that the curves �0 and ��

are in general different. We illustrate this on a simple ex-
ample. Consider N=10 identical oscillators whose collective
dynamics is given by Eq. �1�. They define the original sys-
tem, synchronized �R0=1� at the phase value 
0 where the
kick occurs. The kick acts asymmetrically: five out of ten
oscillators are kicked with a uniform strength A. The kicked

system is created in its initial state Z̄0= R̄0ei
̄0 with R̄01,
while the original system continues to rotate with radius
R�t�=1. In Fig. 1 we show the evolution of the complex
mean field �dark curve� of the original system, in comparison
with the one for the kicked system �light curve�. The value of

pPRC �0=
̄0−
0 is clearly visible and can be calculated
from Eq. �6� �we discuss this in the next section�. �� is
measured once the kicked system reaches the synchronized

state �R̄�t�→1�, i.e., it is the limit value of ��t�. As we show
in what follows, the transient desynchronization of the sys-
tem induces different rotation speeds of the two collective
phases which ultimately leads to a discrepancy between �0
and ��.

C. Implementation of the kick

We now construct the transformation that maps the phase
of an oscillator from its pre-kick to its post-kick value

�0→
kick

�̄0

in accordance with Eqs. �2� and �4�. For N=1 and T=0 the
Eq. �1� is reduced to

�̇ = � + A sin�� + 	���t� .

We solve this equation by assuming that at the time t=0 the
frequency term is negligible. This gives

Q��̄0� − Q��0� = 1 where Q =	 d�

A sin�� + 	�
,

which yields the relation

tan
�̄0 + 	

2
= eA tan

�0 + 	

2
,

from which the final transformation is obtained,

�̄0 = 2 arctan
eA tan
�0 + 	

2
� − 	 . �7�

We use the Eq. �7� for shifting the phase value of each os-
cillator in the ensemble as the consequence of the kick. Also,
this expression automatically gives the PRC of an isolated
oscillator �S in response to the kick Eq. �2�,
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FIG. 1. �Color online� Ensemble of N=10 identical oscillators
�k=�=1 undergoing a kick at collective state Z0=ei
0 �large dot�.
Five oscillators are kicked with strength A=−0.25 �other oscillators
are left unperturbed�, for �=0.15 and �= �

3 . Kicked system starts

from its initial state Z̄0= R̄0ei
̄0 �large square�. Time-evolutions
of both complex mean fields are shown for comparison: original

system Z�t� �dark curve� and kicked system Z̄�t� �light curve�. The

values of 
̄0−
0=�0, and ��t� are shown.
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�S = �̄�0+� − ��0−� = �̄0 − �0.

Since the properties of the time evolution of an isolated os-
cillator are not altered by the perturbation �no relaxation
back to stationary state�, its pPRC is always identical to its
fPRC.

Alternatively, the kick transformation Eq. �7� can be for-
mulated in terms of the unitary complex representation. Pro-
ceeding equivalently as above, we obtain

�̄0 =
��0 − b

� − �2b�0
,

where b= eA−1
eA+1

=tanhA
2 . Furthermore, if we introduce the com-

plex parameter �=b�, the transformation above can be fur-
ther simplified as

�̄0 =
�0 − ��

1 − ��0
. �8�

The PRC for a single oscillator �S now reads

�S = arg
�̄0

�0
= arg

1 − ���0��

1 − ��0
.

The kick transformation given by Eqs. �7� or �8� can be used

together with Eq. �6� to analytically calculate Z̄0 �and hence
pPRC� for deterministic kicks.

III. ANALYTICAL CALCULATION OF Z̄0

In this section we discuss the calculation of Z̄0 in the
thermodynamic limit for the cases when the kicking param-
eters are picked from a given probability distribution. For a
general ensemble with frequency distribution g, the complex
mean field reads

Z =	 d�d�g���U��,��ei� =	 d�d�g���W��,��� ,

where U�� ,�� is the fraction of oscillators having frequency
� and phase � �respectively, W�� ,�� for � and ��. After the

kick, the complex mean field Z̄0= ��̄0� is

Z̄0 =	 dAd	d�d�0g������;A,	�U��0,��ei�̄0��0�

=	 dAd	d�d�0g������;A,	�W��0,���̄0��0� , �9�

where � stays for a given distribution of kicking parameters

A and 	, which may depend on �. Thus, Z̄0 can in principle
always be calculated if the distributions U �or W� and � are
known, and the pPRC can be obtained through Eq. �6� �al-
though, the integral Eq. �9� can often be solved only numeri-
cally�. As our first numerical example, we study in Sec. V an
ensemble of identical oscillators with kicking strengths A
picked from a uniform distribution A� �−A0 ,A0�. We com-
pare the simulation results with the “analytical” curves ob-
tained by calculating integrals Eq. �9� numerically.

Alternatively, one can expand the expression Eq. �8� in
power series to obtain

Z̄0 =���0 − ����
n=0

�

���0�n
=��0�

n=0

�

���0�n −����
n=0

�

���0�n ,

valid for ���0�1 that is always verified in our case. We

employ the expression above to directly calculate Z̄0 for
other two examples numerically studied in Sec. V.

As the first of them, we consider identical oscillators with
a unique kicking strength b=tanhA

2 , and phase shifts 	
picked from the following distribution:

��	� =
1

2�
�1 + 2S cos�	 − 	̃�� , �10�

where S
1
2 and 	̃� �− �

2 , �
2 � are real parameters. This distri-

bution is characterized by �ei	�=Sei	̃=S�̃ and �eim	�=0 for
all �m��1, i.e., only its first harmonic is nonzero. This means

that ���=Sb�̃, while ��m�=0 for all �m��1. Putting this in
the series expression above, we obtain a closed simple for-

mula for Z̄0,

Z̄0 = �1 − b2��ei
0 + Sb�̃ei2
0� − Sb�̃�. �11�

As our final example, we examine nonidentical oscillators
with Lorentzian frequency distribution Eq. �5�. We assume
the parameters b and � to be constant �but since the oscilla-
tors are not synchronized prior to the kick, this situation is
not trivial�. We have

Z̄0 =
1

�
�
n=0

�

�n+1��0
n+1� − ���

n=0

�

�n��0
n�

= 
 1

�
− ����

n=0

�

�n�Z0�n −
1

�
,

where the quantities �Z0�n= ��0
n� are defined as in �28�. As

shown there, the collective parameters describing the emer-
gent dynamics of this system lie on OA manifold �we discuss
this in detail in Sec.IV�, defined by

�Z0�n = �Z0�n for all n � 1.

We assume that the departure from OA manifold due to the
kicking is not significant, i.e., the identity above holds. This
assumption gives

Z̄0 = 
 1

�
− ����

n=0

�

�n�Z0�n −
1

�
=

Z0 − ��

1 − �Z0
, �12�

which is the OA approximation for Z̄0. Note that this is a
direct generalization of the phase jump formula for a single
oscillator Eq. �8�.

IV. TIME EVOLUTION OF THE PHASE RESET

In this section we employ the OA theory and estimate the
additional phase shift due to the evolution after the kick. We
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construct a formula for fPRC �� for a general Sakaguchi-
Kuramoto ensemble.

A. Illustrative example

We begin by illustrating the concepts of pPRC and fPRC
further. Consider the simplest nontrivial ensemble consisting
of two oscillators, with dynamics given by Eqs. �1� and �3�.
We apply two different versions of the kicking in the syn-
chronized state of the system:

�a� both oscillators kicked with the equal strengths A1
=A2=0.18;

�b� one oscillator kicked with A1=0.2, the other left un-
perturbed �A2=0�.

For both cases we numerically compute �0 and ��. Re-
sults are reported in Fig. 2: while in the case �a� we have a
perfect agreement between �0 and ��, in the case �b� fPRC
�� significantly differs from the pPRC �0. The difference
between the curves �0 and �� in case �b� is not uniform, but
it depends on the collective phase value.

In the case �a� both oscillators receive equal kicks and
hence the same immediate phase shift. This leaves the sys-

tem in the synchronized state R0= R̄0=1, generating no tran-
sient relaxation: fPRC is given by the pPRC. In contrast to
this, in the case �b� nonuniform kicking desynchronizes the

system R̄0R0, which generates an additional phase shift
during the relaxation of ensemble �cf. Fig. 1�. In the re-
minder of this Section we provide a theoretical framework

for approximating the fPRC based on the knowledge of Z̄0.

B. Ott-Antonsen theory for non-identical oscillators

The Sakaguchi-Kuramoto ensemble of globally coupled
identical oscillators can be exactly described by the
Watanabe-Strogatz �WS� theory �27�. However, the evolution
of mean field in this theory is described through the con-
stants of motion, that are determined from the initial condi-
tions by rather complicated expressions. Recently, Ott and
Antonsen found a simple ansatz that leads to a closed set of
equations for the mean field �28�. As shown in �29�, this

ansatz corresponds to a special choice of constants of motion
in the WS theory. Such a dynamical state �defining the OA
manifold� is eventually reached in an ensemble of noniden-
tical oscillators with Lorentzian frequency distribution. In
this paper we apply the OA theory by assuming that the
deviations from OA manifold due to the kick are small �cf.
derivation of the Eq. �12��. We obtain simple �although ap-
proximate� analytical expressions, whose precision is shown
through numerical results in Sec. V.

We thus consider the general case of an ensemble with
collective dynamics given by Eqs. �1� or �3�, and frequencies
� picked from the Lorentzian distribution Eq. �5�. In the OA
approximation, the evolution of the mean field Z �in thermo-
dynamic limit� is given by �28�

Ż = i�Z − �Z +
�

2
Z�ei� − e−i��Z�2� . �13�

After substituting Z=Rei
 this equation is decomposed into
two real ODEs,

Ṙ =
� cos �

2
R�1 − R2� − �R ,


̇ = � +
� sin �

2
�1 + R2� .

The only stable fixed point for the first equation is Rf

=�1− 2�
� cos � �1. The system achieves this final radius value

only if � cos ��2�, and otherwise remains fully desynchro-
nized with R�t�→0 �note that full synchronization Rf =1 oc-
curs only for �=0�. For R=Rf the collective phase rotates
with frequency �=�+� sin �−� tan �. Both equations
above can be easily integrated, yielding

R�t� = Rf
1 +
Rf

2 − R0
2

R0
2 e−�� cos �−2��t�−1/2

,


�t� = 
0 + �t + � sin �t − � tan �t +
tan �

2

�ln
1 +
Rf

2 − R0
2

R0
2 e−�� cos �−2��t� − tan � ln
Rf

R0
� ,

where R0=R�0� and 
0=
�0�. Consider again the original
and kicked ensemble. The original system is at time t=0 in
stationary state Z0, with radius R0 �equals to final stationary
radius R0=Rf� and phase evolution 
�t�=
0+�t. The

kicked system starts at time t=0 from the initial state Z̄0

= R̄0ei
̄0, with the time evolution given by the equation
above. We consider the phase difference between two sys-

tems defined as ��t�= �
̄−
��t� which reads

-0.3π

0

0.3π

-π 0 π

∆
(Φ

0)

Φ0

∆0 case (a)
∆∞ case (a)
∆0 case (b)
∆∞ case (b)

FIG. 2. �Color online� PRC for an ensemble of two identical
oscillators having �=1, with two different kicking schemes.
�a�: A1=A2=0.18, �b� A1=0.2, A2=0. Both cases: �= �

3 and �=0.1.
Legend indicates various cases or curves �two curves for case �a�
nearly overlap�.
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��t� = �
̄0 − 
0� +
tan �

2
ln
1 +

R̄f
2 − R̄0

2

R̄0
2

e−�� cos �−2��t�
+ tan � ln
 R̄0

R̄f

� . �14�

Coming back to the definitions of pPRC and fPRC from Sec.
II, we differ between two situations:

�a� at t=0 last two terms in Eq. �14� cancel out, leaving

��t = 0� = 
̄0 − 
0 = �0

which is the pPRC �0, consistently with what exposed in
Sec. II;

�b� as t→� the middle term on RHS of Eq. �14� vanishes
at the limit, leaving

�� = �0 + �R where we have defined

�R = tan � ln
 R̄0

R0
� = tan � ln� Z̄0

Z0
� �15�

�note that R0=Rf = R̄f, as the final stationary R-value depends
only on the ensemble parameters�.

The term �R is what accounts for the additional phase
shift due to relaxation of the system back to stationary state.

It depends on the nature of perturbation through
R̄0

R0
and the

dynamics of kicked system through �. For perturbations that

leave R0= R̄0 �e.g., equal perturbation applied to all oscilla-
tors as in Fig. 2, case �a�� and systems with �=0, the fPRC
�� is identical to pPRC �0. On the other hand, if ��0 the
rotation speed of the collective phase depends on the value
of R. Hence, if the stationary radius of the system is per-

turbed �R0� R̄0�, an additional phase reset �R is generated at
the limit �cf. Figs. 1 and 2, case �b��, which depends on the
kicking phase 
0.

If the details of the kick are known �R can be calculated
from Eq. �15� and the analytical approximation for fPRC can
be constructed. Alternatively, fPRC can be numerically ap-
proximated by summing the computed curves �0 and �R,
even without knowing the parameters that specify the system
and the kick. We stress again that Eq. �15� is approximate, as
it is based on the OA ansatz; its precision is related to the
deviations from the OA manifold.

C. Ott-Antonsen theory for identical oscillators

The equivalent results for the ensemble of identical oscil-
lators can be easily recovered from what just exposed by
taking �→0+. Since identical oscillators are always synchro-

nized prior to the kicking, we also have R0=Rf = R̄f =1, and

R̄0�1. The phase difference equation Eq. �14� is reduced to

��t� = �
̄0 − 
0� +
tan �

2
ln
1 +

1 − R̄0
2

R̄0
2

e−� cos �t�
+ tan � ln R̄0,

from which we obtain the formula for fPRC,

�� = �0 + tan � ln�Z̄0� .

The dynamics of the complex order parameter given by Eq.
�13� only weakly depends on �, and the limit �→0+ in this
equation is not singular. However, the whole validity of the
OA theory leading to Eq. �13� heavily depends on the spread-
ing range of the frequencies �, and the limit �→0+ appears
to be singular in this respect �see discussion in �28,29��.

In the next section we show the numerical results con-
firming the theory just exposed.

V. NUMERICAL RESULTS

In this section we expose our numerical results, confirm-
ing our theoretical findings from previous sections. For a
given ensemble consisting of N oscillators, we start from a
random initial phase for each oscillator �� �0,2�� and run
the dynamics until the system reaches the stationary state.
Then, a collective phase value 
0 is chosen at random �in the
stationary regime� and the kick is applied �in accordance
with Eq. �7� for each oscillator�. The phase reset is immedi-
ately measured, and the respective values of �0�
0� and
�R�
0� are recorded. The kicked system is then relaxed into
a stationary state, when the final phase reset ���
0� is mea-
sured with respect to the original system �at the same final
time value�. Repeating this procedure for many values of 
0
yields the numerical curves �0, �R, and ��. These are com-
pared with the corresponding analytical curves obtained as
previously discussed. In the last paragraph we examine the
phase resetting in an ensemble of complex Stuart-Landau
oscillators, showing the validity our results in a broader con-
text.

A. Small ensembles of identical oscillators

We start with an ensemble of N=10 identical oscillators
with the kick implemented as follows: three oscillators are
kicked with a strength of A1; four are kicked with a strength
of A2; while the remaining three are left unperturbed. For this

case Z̄0 can be easily calculated using Eqs. �6� and �8�, which
gives �0 and �R, and hence the fPRC ��. In Fig. 3 we show
the computed numerical curves �0, �R, and �� �marked by
different symbols�, in comparison with the analytical fPRC
�� �thick curve�.

The OA equation Eq. �13� is an approximation valid at the
thermodynamic limit. Nevertheless, in Fig. 3 analytical fPRC
approximates the numerical fPRC with a good precision, de-
spite small ensemble size. We considered many different de-
terministic kick realizations �through parameters A and 	�
for N=10 identical oscillators, and in general obtained a very
good agreement between the numerical and analytical fPRC.
Note that the magnitude of �R is comparable to that of
�0—the post-kick evolution of the phase reset is significant.

We now pick the kicking parameters at random: Ak-values
from a Gaussian distribution centered at 0, and 	k-values
uniformly from interval �−� ,��. Numerically computed
curves �0, �R, and �� are reported in Fig. 4 �same symbols
are used�. Since the details of the kick are now unknown, we
are unable to construct the analytical approximations. How-
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ever, it follows from the formula Eq. �15� that one can sum
numerically obtained �0 and �R and approximate ��. We
show this in Fig. 4: numerical curves ��0+�R� and �� agree
rather well, thus confirming the practical validity of the for-
mula Eq. �15�.

B. Large ensembles of identical oscillators

We now examine large ensembles approximating the ther-
modynamic limit through three examples discussed in Sec.
III. We start with N=1000 identical oscillators and the kick
implemented by uniformly picking the kicking strengths A
from the interval �−A0 ,A0�, while setting 	=0 for all oscil-
lators. We compute the numerical curves �0, �R, and ��, and
construct the corresponding “analytical” curves from Eq. �9�
�quotes indicate that the integral Eq. �9� was solved numeri-
cally�. Both numerical and analytical results are shown in
Fig. 5 �same symbols as previously�. The top figure reports
results of a run with a single realization of A-values, while in
the bottom figure we show sampled data obtained from many
different realization of A-values. For completeness, we now

report all three analytical curves �differently dashed thick
lines�. There is a very good agreement between all numerical
and analytical curves, even for a single realization of
A-values, due to the large ensemble size. For the sampled
curves, note that the theoretical fPRC almost perfectly ap-
proximates the averaged value of numerical fPRC. This fur-
ther confirms the quality of the OA approximation.

We now set all the kicking strengths to constant A=A0,
while picking the 	-values from the interval �−� ,�� via the
distribution Eq. �10�. We use Eq. �11� to test our numerical
findings. Note that in opposition to the previous example,
now we are having an entirely analytical solution for the
whole PRC-problem. The numerical and analytical results
are reported in Fig. 6, where we again show a case of a
single 	-values realization �top�, and the sampled data from
many different realization of 	-values �bottom�. We have a
very good agreement between all obtained curves, particu-
larly in the sampled case. The agreement is however not
perfect, and it can be used to estimate the precision of OA
approximation.

C. Large ensembles of nonidentical oscillators

We now examine an ensemble consisting of N=1000 non-
identical oscillators with a Lorentzian frequency distribution
Eq. �5�. All kicking strengths are set to A=A0, with 	=0.
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analytic ∆∞

FIG. 3. �Color online� Ensemble of N=10 identical oscillators,
three kicked with a strength A1=0.05, four kicked with a strength
A2=−0.06, and the remaining three unperturbed. Parameters:
	k=0, �=1, �=0.1, and �= 2�

7 . Numerical and analytical curves are
indicated in Legend.
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FIG. 4. �Color online� Ensemble of N=10 identical oscillators
with random kicks: strengths Ak picked from a Gaussian distribu-
tion with mean 0 and standard deviation 0.1, 	k-values picked uni-
formly from �−� ,��. Parameters: �=1, �=0.1, and �= 2�

7 . Numeri-
cal curves shown as indicated in Legend.

-0.03π

-0.01π

0.01π

-π 0 π

∆
(Φ

0)

Φ0

∆0
∆R
∆∞

analytic ∆0
analytic ∆R
analytic ∆∞

-0.03π

-0.01π

0.01π

-π 0 π
∆

(Φ
0)

Φ0

∆0
∆R
∆∞

analytic ∆0
analytic ∆R
analytic ∆∞

FIG. 5. �Color online� Ensemble of N=1000 identical oscillators
with kicking strengths A picked from A� �−A0 ,A0� for A0=0.1,
with all 	=0, and �=1, �=0.1, �= 2�

7 . All the curves are shown as
indicated in the Legend. Top: a single realization of A-values. Bot-
tom: 10 values taken from each of 60 runs with different realiza-
tions of A-values.

PHASE RESETTING OF COLLECTIVE RHYTHM IN… PHYSICAL REVIEW E 82, 056202 �2010�

056202-7



Since the ensemble is not fully synchronized prior to the
kicking, phase jumps of oscillators are in general different,
depending on their phases value at the time of kick. We now
use Eq. �12� to obtain the analytical curves, assuming the
kick does not remove the system significantly from the OA
manifold. The results are shown in Fig. 7 for two different
values of Lorentzian width �. We show only the cases of
single kicking realizations �since they are always noisy�.
Again, a very good agreement between all the numerical and
analytical curves is obtained, even in the case of �=0.3 �bot-
tom� where we observe a discontinuity in the pPRC and
fPRC. This confirms the assumption of small departure from
OA manifold due to kicking, used to obtain Eq. �12�.

D. Large ensembles of Stuart-Landau oscillators

In the final part of this section, we wish to illustrate the
extent of the theory developed in this work. We consider an
ensemble of N=1000 nonidentical Stuart-Landau oscillators
�4�, described by the complex amplitudes w=rei�. The equa-
tion of the system which reads

ẇ = �� + i� − ��w�2�w + �ei�Z − A�e−i	���t�

can be decomposed into

ṙ = ��1 − r2�r + �R cos�
 − � + �� − A� cos�� + 	�� ��t� ,

�̇ = � + �
R

r
sin�
 − � + �� +

A�

r
sin�� + 	�� ��t� ,

where Z=Rei
= �w� is the mean field, through which the
ensemble is coupled. For ��1 the behavior of the system
resembles phase-oscillators since r�1 after transients for all
oscillators. This makes the nonkicked part of the phase equa-
tion above reduce to the Eq. �1�. The kick is implemented in
analogy with the Sec. II, but now acts according to

r̄0 = �r0ei�0 − A�ei	�� ,

�̄0 = arg�r0ei�0 − A�ei	�� .

In equivalence with the previous paragraph, we consider
an ensemble with a single realization of the Lorentzian fre-
quency distribution, and a uniform kick A�=A0�, 	�=0. In
Fig. 8 we show the numerical curves, along with the analyti-
cal ones which are obtained from the Eq. �12�, but using
A=0.022 instead of A=0.1. Namely, the kick of a strength
A0�=0.1 described by the equations above produces different
shift in the collective phase, roughly five times smaller
than a kick of strength A=0.1 given by Eq. �7� �since it
affects both r and ��. Nevertheless, there is a good agree-
ment between numerical and analytical curves, despite hav-
ing considered a completely different �complex, i.e., two-
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FIG. 6. �Color online� Ensemble of N=1000 identical oscilla-
tors. All kicking strengths are fixed to A0=0.1, while 	-values are
picked from �−� ,�� via distribution Eq. �10� for S=0.15 and 	̃
=�. �=1, �=0.1, �= 2�

7 . All the curves are shown as indicated in
the Legend. Top: a single realization of 	-values. Bottom: 10 PRC-
values taken from each of 60 runs with different realizations of
	-values.
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FIG. 7. �Color online� Ensemble of N=1000 nonidentical oscil-
lators with Lorentzian frequency distribution Eq. �5� with �̃=10.
All kicking strengths A0=0.1 and 	=0. Other parameters: �=1,
�= 2�

7 . Top: �=0.2, bottom: �=0.3. All the curves are shown
as indicated in the Legend. Frequencies �k are taken to be
�k=� tan�− �

2 + k−0.5
N ��.
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dimensional� class of oscillators. This suggests that the range
of application of both OA theory and our phase resetting
theory extends beyond simple phase-oscillators.

VI. CONCLUSIONS

We constructed a theory of the phase resetting of the col-
lective phase for ensembles of Sakaguchi-Kuramoto oscilla-
tors interacting globally via a non-odd coupling function. By
employing the Ott-Antonsen theory we showed that the final
phase resetting curve can be recovered from the collective

state Z̄0 of the system, measured immediately after the per-
turbation. We confirmed our theory on a series of numerical
examples involving small and large ensembles of identical
and nonidentical oscillators, using various kicking patterns
and strengths. In particular, we showed an example where
the entire PRC problem was solved analytically �Eq. �11��.
Finally, by investigating PRC of an ensemble of Stuart-
Landau oscillators, we showed that our theory is valid be-
yond phase-oscillator models.

Our main result captured by formula Eq. �15�, provides
three methods of obtaining the final PRC ��:

�a� numerically, from �a long� run �dark symbols in Figs.
3–7�;

�b� analytically, by calculating the curve �� using Eqs.
�6� and �15� �full thick curve in Figs. 3–7�;

�c� semianalytically, by applying the Eq. �15� to the nu-
merically obtained curves �0 and �R �squares in Fig. 4�.

Our numerical results show good agreement for all three
methods on all examined examples.

Our findings suggest that the relaxation of the system af-
ter the perturbation can significantly alter its final PRC. In
agreement with �21�, we found that the initial and the final
phase resets coincide for odd interaction functions ��=0� or
perturbations that leave the collective state unchanged �R̄0
=R0�. However, once the collective radius R is perturbed,
different rotation speeds of the collective phases of the origi-
nal and kicked systems �proportional to sin ��0� induce an
additional nontrivial phase reset at the limit.

It is worth noticing the case of ���= �
2 : here our theory no

longer holds, since the mean field is zero Z=0, and therefore
the collective phase is not well defined. This renders impos-
sible to generally define the concept of phase resetting. How-
ever, in this case the kick transiently induces Z�0 contrast-
ing the disordered behavior for Z=0—this situation can
perhaps be used to model the dynamical behavior underlying
the appearance of Event Related Potentials, which are of
great current interest in neuroscience and psychology �30�.

Our theory is valid for arbitrary Sakaguchi-Kuramoto-
type ensembles of identical oscillators �e.g., a nonlinear cou-
pling �31� can be easily incorporated�, and ensembles of non-
identical oscillators with Lorentzian frequency distribution.
Its limitations are in principle given by the range of validity
of OA theory �28,29,31�; nevertheless, our numerical results
indicate that our analytical findings apply even for conditions
that are formally not included in the OA theory, such as
small ensembles �far from thermodynamic limit�, or two-
dimensional Stuart-Landau oscillators.

An important extension of our results regards the gener-
alization on complex networks. A general network connec-
tion topology will generate a more complicated post-kick
time evolution of the collective phase, which is not covered
by the OA theory. Understanding evolution of the phase reset
on complex networks is of high relevance for problems re-
lated to the reconstruction of the network structure from the
experimental data. By investigating the properties of the em-
pirical PRCs, one might be able to recover the connectivity
patterns of the underlying network �9,25�.

Another relevant question revolves around the stochastic
periodic systems, and different methods of defining their
PRCs �32�. A complete theory of stochastic PRCs will be of
great help in constructing the PRC from periodic �but noisy�
experimental data. Finally, since a PRC can be generally de-
fined for any rhythmic system, our results can be extended to
other types or models of oscillators, such as different models
of neural cells.
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