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Abstract. In the dynamic processes on networks collective effects emerge due to the
couplings between nodes, where the network structure may play an important role. In-
teraction along many network links in the nonlinear dynamics may lead to a kind of
chaotic collective behavior. Here we study two types of well-defined diffusive dynamics on
scale-free trees: traffic of packets as navigated random walks, and chaotic standard maps
coupled along the network links. We show that in both cases robust collective dynamic
effects appear, which can be measured statistically and related to non-ergodicity of the
dynamics on the network. Specifically, we find universal features in the fluctuations of
time series and appropriately defined return-time statistics.
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1. Introduction

Discrete-time diffusion processes on complex networks are modeled by a dynam-
ical variable attached to each node with a diffusive particle hopping among the
neighboring nodes, according to a set of dynamical rules. The interaction be-
tween these dynamical variables is thus provided along the locally available network
links. Hence, the network with its connectivity, clustering, possible modularity,
and other hidden structural characteristics [1], may affect the course of the process
and measurable statistical properties. Recently, an extensive numerical study of
the navigated random walks, as models of information packets traffic on different
networks [2], revealed that the structure–dynamics interrelations depend both on
the network complexity and parameters of the process itself. In general, a more
complex network structure leaves more room for the process adaptation and im-
provement of the efficiency. It has been recognized that the emergent dynamical
behavior can be characterized by scale-invariant behavior with power-law distribu-
tions, in the transit times of packets P (TT), waiting times in queues P (tw), return-
time statistics (autocorrelator), and correlations and fluctuations of the traffic time
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series. Moreover, the same process yields sets of scaling exponents that are different
for different network topologies (see recent review [2] and references therein).

Nonlinear dynamics on networks with increasing number of links may lead to a
kind of chaotic collective behavior [3]. Trees are special type of graphs without
loops; in a study of dynamical processes on networks, trees play a special role. For
instance, a spanning tree related to the maximum dynamical flow of packets [4]
contains most important paths for the process on the original graph. In another
example of coupled chaotic maps on trees [5], a small tree-like subgraph 4-star
appears as a dynamical motif, which captures the basic dynamical features of the
whole system. Recently, the spectrum of the Laplacian operator and the return-time
distribution related to the random walk on trees and locally tree-like graphs has
been solved analytically [6]. The results suggest that nodes with low connectivity
qm = 1, 2 play a special role in the random diffusion on trees.

Here we report some new results on scale-free trees related to two types of the
diffusion processes:

• navigated traffic of information packets, using model of refs [2,7];
• chaotic standard maps coupled diffusively along the tree links [5].

We focus on non-ergodicity of the dynamics and define and compute the appropri-
ate statistical quantities in each process: the return-time distribution P (∆t), and
scaling of the fluctuations in time series of the dynamic variable at each node on the
tree. The example of the tree with N = 1000 nodes that we consider is shown in
figure 1. It has a node-connectivity profile with a power-law q[i] ∼ (N/i)γ , which is
compatible with the degree distribution P (q) ∼ q−1/γ+1. In the simulations we use
trees with γ = 0.8 for the traffic, and γ = 0.5 for chaotic maps dynamics. Note that
in the scale-free tree a large number of nodes with minimal connectivity qm = 1
occur, which are mostly attached to the hub. This number is increasing with the
network size.

In §2, we describe the traffic of information packets with local search and queu-
ing and give the results for the return-times to nodes and the noise fluctuations
measured at nodes on the scale-free tree. In §3, we investigate the dynamics of
coupled standard maps on the same tree and present the results for the analo-
gous quantities, defined adequately: return-times to given phase space areas for a
tree-averaged trajectory, and the time series fluctuations for each node on the tree.
Section 4 contains a short summary and discussion of the results.

2. Traffic on scale-free trees

We use the model developed in refs [4,2,7,8] for transport of the information pack-
ets to the pre-specified destinations on the network, with packet navigation and
queuing at nodes. The properties and the relevant parameters of the model are
described in detail in ref. [2], with the numerical implementation given in ref. [8].
In short, at each time step each node creates a packet with a given rate R and sends
it to a randomly selected recipient node. Each node processes a packet from top of
its queue (LIFO-queue) towards one of its neighbors. The neighbor node is selected
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Figure 1. Scale-free tree of N = 1000 nodes used in the simulations. Shown
are the nodes which synchronize after 104 steps at coupling strength µ = 0.011
(pale) and unsynchronized nodes (dark).

according to nnn-navigation rule, in which the node searches for the packet’s recip-
ient address in the next-near-neighborhood. If the recipient is not in the searched
area, then the packet is sent to a random neighbor, who repeats the search in its
neighborhood. When the packet arrives to its destination it is removed from the
network. When more than one packet is found at the same node, the packets make
a queue in the buffer at that node, waiting to be processed. We use a fixed maxi-
mum buffer size H = 1000 packets at each node. If the buffer of a selected node is
full, as at the jamming threshold, the packet cannot be delivered and waits for a
further possibility to be delivered. One packet per time step is processed.

Instead of a constant creation rate R, in this work we use a constant packet
density ρ =const. (we typically use ρ = 100 packets). Each packet that arrives is
in the next time step replaced by the creation of a new one, therefore assuring the
constancy of ρ. In this way the stationarity of the traffic time series is guaranteed,
and the limit ρ = 1 can be implemented precisely. This limit is important in the
context of the return-time distribution (see later). In figure 2 on the top panel, we
show a typical time series, representing the number nodes which are processing a
packet at the same time. It was shown in refs [2,7] that such time series are fractal,
with long-range correlations in the power spectrum as

S(f) ∼ f−Φ, 1 < Φ < 2. (1)

It was shown (see ref. [2]) that the degree of correlations in the power spectrum
depends on the traffic density, in particular, it increases while approaching the
jamming transition [2,9].
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Figure 2. Top: Time series representing the number of simultaneously active
nodes on the tree for packet density ρ = 100. Bottom: Dispersion of the time
series {hi(t)} representing the number of packets processed by all the nodes
on the tree i = 1, 2, . . . , N plotted against time-average 〈hi(t)〉t for a fixed
posting rate R = 10−3 and two processing algorithms.

Here we show another feature of the time series {h([i], t)}, which represents the
number of packets processed by each node i = 1, 2, . . . , N on the tree within a
fixed time window TWIN = 103 steps. In figure 2, in the bottom panel, we plot
the standard deviation σ[i] of the time series h([i], t) against its average over many
time windows 〈h[i]〉t. Each point on the plot represents one node on the tree. The
general scaling law (see ref. [10] and references therein)

σ[i] ∼ const. 〈h[i]〉ζt , (2)

holds. However, in contrast to non-universal slopes 1/2 < ζ < 1, depending on
the width of time windows TWIN found in networks with cycles [10], for the tree
we obtained a unique exponent with a maximal value α = 1. Furthermore, the
exponent is the same for both random diffusion and nnn-navigation.

The distribution of the occupation numbers of all nodes on the tree within a
given time window TWIN = 1000 steps, shown in figure 3 (top), shows that nodes
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Figure 3. Top: Distribution of the occupation numbers within time window
TWIN = 103 of the nodes on the tree for packet density ρ = 1000. Bottom:
Distribution of return-times ∆t at a node for ρ = 1, averaged over all nodes
and log-binned with base b = 1.01.

play a different role in the traffic, depending on their connectivity (number of links
attached to the node). In particular, the hub is busy at each time step in cor-
respondence to the peak at the occupation number 103, whereas other nodes are
gradually less involved in the process, leading to a broad distribution of the occu-
pation numbers. The slope of the distribution follows quite closely the distribution
of degree, and weakly depends on the packet density. This uneven distribution of
the occupation probabilities (occupation numbers divided by TWIN) is a signal of a
weak ergodicity breaking [11], which occurs due to the topological inhomogeneity
of the scale-free tree.

In figure 3, bottom panel, we show the simulation results for the distribution of
return-times on the tree. In the general case of dense traffic, the return-time is
defined as the time interval ∆t between two successive events at the same node.
Here we present the results in the limit ρ = 1, that is one packet is sent only after
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the previous one has been delivered. In this way, ∆t corresponds to the return
of the walker to the origin, and then the distribution P (∆t) corresponds to the
autocorrelator. In ref. [6] the autocorrelator was computed analytically in the case
of random walk on the infinite tree-like graphs. The power-law distribution was
predicted with the scaling exponent 13/36 [6]. In our results we fitted the numerical
curve with the slope 0.36 and a (non-exponential) tail. Note that numerical results
are sensitive to the finiteness of the tree also with respect to the frequency of even
and odd intervals (dispersion of the curve at the lower end).

3. Coupled chaotic maps on trees

Coupled map systems (CMS) on networks are a specific class of complex systems
possessing a rich variety of dynamical behavior [5,12–14] and providing models for
studies of different dynamical phenomena [15–17]. Following our previous studies
[5,12], we examine the collective dynamics of a system of two-dimensional Chirikov
standard maps

(
x′[i]
y′[i]

)
=

(
x[i] + y[i] + ε sin(2πx[i]) mod 1
y[i] + ε sin(2πx[i])

)
(3)

coupled along the edges of a scale-free tree with N = 1000 nodes. The coupling is
realized through the angle-coordinate (x) of the standard maps (i.e. nodes) with a
fixed time delay. All the nodes are updated simultaneously according to

(
x[i]n+1

y[i]n+1

)
= (1− µ)

(
x[i]′n
y[i]′n

)
+

µ

ki

( ∑
j∈Ki

(x[j]n − x[i]′n)
0

)
, (4)

where (′) denotes the next iterate of eq. (3), n is the global discrete time, [i] indexes
the tree nodes, ki is the node degree and Ki denotes the neighborhood of the node
[i]. Therefore, the update of each node includes the values of the neighboring nodes
in the previous time step. We fix the standard map chaotic parameter to ε = 0.9
(strong chaos) and study the dynamics of eq. (4) as a function of the network
coupling strength µ. We chose the initial conditions for all the nodes randomly
from the phase space subset (x, y) ∈ [0, 1]× [−1, 1].

For small coupling strengths up to µ ∼ 0.02 the dynamics of CMS eq. (4) is
characterized by the inhibition of chaotic diffusion of the uncoupled standard map
(eq. (3)): motion of each node takes place within a phase space band bounded in
y-coordinate. Further increase of µ gives rise to the regularization process: after
transient nodes group into certain number of clusters, with each cluster comprising
the nodes that share common motion properties. Within each cluster nodes oscillate
between two groups of points, firstly as a quasi-periodic orbit, and later as a periodic
(regular) orbit (see ref. [18]). Also, studies of our CMS on smaller graphs (motifs)
[5] revealed strange attractors as node-orbits, some of which appear to have the
properties of the strange non-chaotic attractors [19]. The regularization can be
quantified using the time-averaged orbit defined for each node [i] as

(〈x[i]〉, 〈y[i]〉) = lim
n→∞

1
n− n0

n∑

k=n0

(x[i]k, y[i]k), (5)
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Figure 4. Regularization of nodes on the tree: two-dimensional plot of time
averaged values of 〈y[i]〉 for all nodes on the tree and one set of initial condi-
tions, plotted against coupling strength µ. Color map: number of nodes with
a given 〈y[i]〉 value.

which is a phase space point that qualitatively captures the node’s motion after
transient n0. In order to illustrate the regularity of emergent tree dynamics, in
figure 4 we show a two-dimensional histogram of time-average y-coordinate 〈y[i]〉
for all the tree’s nodes, obtained for a single set of initial conditions for various µ-
values. As is clear from the picture, each node at every coupling value larger than
µ ∼ 0.02 settles to oscillate in a way to maintain a constant 〈y[i]〉. Moreover, these
common values of 〈y[i]〉 (that define the clusters mentioned above) are organized
as a discrete set of equally spaced values for every coupling strength. The number
of different 〈y[i]〉-values (i.e. the number of clusters) decreases with increase of µ,
and eventually (for µ ∼ 0.07) remains with only one value 〈y[i]〉 = 0 shared by all
nodes.

A way to obtain a qualitative view of the tree’s overall motion is provided by the
network-averaged orbit defined at each time step for the whole tree as

(x̂n, ŷn) =
1
N

N∑

i=1

(x[i]n, y[i]n). (6)

Network-averaged orbit gives at each time step the average phase space position of
the entire network and it is useful in the study of the global CMS properties. It
was employed here to study the return-time statistics of our system: we measure
the distribution of the time intervals between the consecutive visits of the network-
average orbit to a pre-defined region in phase space. The results are shown in
figure 5: the coupled tree dynamics builds up power-law tails that follow a slope of
roughly τ∆ = −2. This slope is followed precisely in the case of coupling µ = 0.051
where the tree dynamics if fully regular (cf. figure 4).

A further measure of the dynamical collective effects on the tree is given by the
study of the dispersion of the time series of momentum coordinate {yn[i]} for all
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Figure 5. Distribution of the return-times to the fixed areas of the phase
space in 2D coupled chaotic maps on the tree for the tree-averaged trajectory.
Curves correspond to different values of the coupling µ. Slopes of dashed lines
are τ∆ = −2. Vertical long-dashed line marks approximate boundary of the
transient regime.

the nodes, in analogy with §2 and eq. (2). In the case of chaotic CMS the time
series of the value of the momentum coordinate are stochastic in the region of small
couplings, where we still find the chaotic behavior, in contrast to the regular orbits.
In figure 6 we report the behavior of the time series’ standard deviation σ[i] as a
function of its mean value 〈y[i]〉 for all the nodes [i]. Again each point represents
one node on the tree. Although the average values 〈y[i]〉 for all 1000 nodes span
two decades, there seems to be very little variation of σ[i] for the nodes that did not
achieve regular behavior (compare figure 4 for small µ-values). If we are to compare
these results with the scaling law in eq. (2), we find that the chaotic dynamics of
our coupled maps is compatible with the fluctuating time series with the exponent
ζ = 0, in contrast to most of the ‘regular’ diffusion dynamics where ζ > 0.5 was
found. We also clearly see the process of regularization of orbits from chaotic (with
large σ[i]) to regular (with small and specifically defined σ[i]). For larger µ-values
(see inset) there is a precise correlation between σ[i] and 〈y[i]〉 defining the clusters
of nodes introduced previously – each cluster is specified by its 〈y[i]〉 and σ[i] shared
by the nodes of that cluster.

4. Conclusions

We studied two different types of diffusive dynamics on the scale-free trees: random-
walk dynamics with local navigation and traps, and phase-coupled standard maps
in their chaotic regime. We observed a variety of collective dynamical effects, arising
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Figure 6. Dispersion of the time series {yi(t)} for all nodes on the tree
i = 1, 2, . . . , N for several values of the coupling µ. Inset: Zoom of the central
area of the regular behavior on a linear scale.

due to the couplings along the tree links. In particular, we presented the results
for the appropriately defined return-time distributions and fluctuations of the time
series of the dynamical variables attached to network nodes in both processes.

We find several surprisingly robust scaling properties related to the tree structure.
In the transport processes, the distribution of the return-times (autocorrelator)
seems to be independent of both navigation and trapping of the random walks.
Apart for the cut-offs, our numerical results agree with the analytical predictions
for the correlator on tree-like graphs [6]. Similarly, the scaling of the time series
fluctuations in the number of visits of the walker to each node exhibits a universal
exponent ζ = 1, both for navigated and random diffusion. The scale-free structure
of the tree with the central hub node plays a crucial role in the appearance of the
scaling properites and consequently in the uneven use of the phase space. On the
other hand, in the case of the coupled chaotic maps on trees, the difference between
nodes seem to be minimized in the chaotic phase. However, when the self-organized
non-chaotic motion occurs [5] (at larger couplings) the distribution of return-times
to the pre-defined areas of phase space appears to have a power-law tail with a
universal scaling exponent τ∆ = −2, away from cut-offs. In general, occurrence
of a broad distribution of the return-times suggests uneven use of the phase space
and non-ergodicity. We are not aware of the exact mechanisms which lead to the
universal scaling exponent in this coupled dynamics.

Despite general similarities of the underlying network topology, the two consid-
ered systems show various differences in their emergent behavior which is a clear
consequence of the inherently different dynamical processes being investigated. Yet,
both systems display power-law tails (although with different slopes) in their statis-
tical distributions. This represents a remarkable similarity between the two systems,
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which might owe its origin to the network architecture being employed. Along with
other open questions, this remains an issue for future studies.
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[4] B Tadić and S Thurner, Physica A332, 566 (2004)
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[7] B Tadić and G Rodgers, Adv. Complex Systems 5, 445 (2002)
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[18] Z Levnajić, Dynamical regularization in scalefree-trees of coupled 2D chaotic maps,

Lecture Notes in Computer Science Part 2, Vol. 5102, pp. 584–592 (2008)
[19] S S Negi and R Ramaswamy, Pramana – J. Phys. 56(1), 47 (2001)

1108 Pramana – J. Phys., Vol. 70, No. 6, June 2008


