
Dynamical Regularization in Scalefree-Trees
of Coupled 2D Chaotic Maps

Zoran Levnajić
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Abstract. The dynamics of coupled 2D chaotic maps with time-delay
on a scalefree-tree is studied, with different types of the collective be-
haviors already been reported for various values of coupling strength [1].
In this work we focus on the dynamics’ time-evolution at the coupling
strength of the stability threshold and examine the properties of the reg-
ularization process. The time-scales involved in the appearance of the
regular state and the periodic state are determined. We find unexpected
regularity in the the system’s final steady state: all the period values
turn out to be integer multiples of one among given numbers. Moreover,
the period value distribution follows a power-law with a slope of -2.24.

Keywords: complex networks, coupled maps systems, emergent behav-
iour, self-organization in complex systems.

1 Introduction

Complex networks are overwhelmingly present in nature: a variety of systems
from technology, biology or sociology can be seen as networks of interacting
units that behave collectively [2,3]. The paradigm of many basic elements that
generate complex emergent behavior by interacting through the network links
received a lot of attention as a convenient way to model complex systems.

Coupled Maps Systems (CMS) are networks of interacting dynamical sys-
tems (maps) that can be easily computationally modeled allowing the study of
complex phenomena like synchronization, self-organization or phase transitions
[4,5,6,7]. The emergent behavior of a CMS can be investigated in relation to
the architecture/topology of the network, type/strength of the coupling or the
properties of the uncoupled units, often representing a model of applicational
interest [8,9]. The discovery of intrinsic modularity of many naturally occurring
networks [10] triggered the investigations of the dynamical properties of small
graph structures (termed motifs) [11], and their role in the global behavior of
the network [12,13]. Recent works emphasized the physical importance of time-
delayed coupling due to its ability to mimic the realistic network communication
[14,15]. Also, following the extensive studies of collective behavior in 1D CMS,
the relevance of still poorly explored case of 2D CMS was recently indicated
[16,1], having special relevance in the context of scalefree networks [2].

M. Bubak et al. (Eds.): ICCS 2008, Part II, LNCS 5102, pp. 584–592, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



Dynamical Regularization in Scalefree 585

In the previous works [1,17] we studied the self-organization of coupled 2D
standard maps on scalefree trees and motifs investigating different types of the
collective behavior in function of the network coupling strength. After tran-
sients, the CMS dynamics was found to have two main collective effects: the
dynamical localization, acting at all non-zero coupling strengths that inhibits
the chaotic phase space diffusion, followed by the regularization acting at larger
coupling strengths that produces groups of quasi-periodic emergent orbits with
common oscillation properties. For specific coupling values the network interac-
tion eventually turns the quasi-periodic orbits into the periodic orbits or even
more complex structures like strange attractors, some of which unexpectedly
appear to have characteristics of the strange non-chaotic attractors, generally
known to arise in the driven systems [18].

As we revealed, there exists a critical network coupling strength μc relatively
common for all scalefree-trees and motifs, at which the collective motion becomes
regular even after very short transient. In this work we will further examine the
dynamics at μc for a fixed scalefree-tree. We will be concerned with the time-
evolution of our CMS and the appearance of the collective effects in function of
the initial conditions, seeking to reveal the relevant time-scales and the properties
of the final emergent motion.

The paper is organized as follows: after defining our CMS on a scalefree-tree
in the next Sect., we study its regularization process using the node-average
and the time-average orbit approach in the Sect. 3. In the Sect. 4 we study the
appearance and the properties of the emergent periodic states, and conclude
with the Sect. 5 outlining the results and discussing the open questions.

2 Coupled Map System Set-Up on a Scalefree Tree

A scalefree network with the tree topology is grown using the standard procedure
of preferential attachment [2] by 1 link/node for N = 1000 nodes. Every node is
assumed to be a dynamical system given by the Chirikov standard map:

x′ = x + y + ε sin(2πx) [mod 1]
y′ = y + ε sin(2πx). (1)

The nodes (i.e. dynamical systems) are interacting through the network links
by one-step time-delay difference in angle (x) coordinate so that a complete
time-step of the node [i] for our Coupled map system (CMS) is given by:

x[i]t+1 = (1 − μ)x′[i]t + μ
ki

∑
j∈Ki

(x[j]t − x′[i]t)
y[i]t+1 = (1 − μ)y′[i]t,

(2)

as in [1,17]. Here, (′) denotes the next iterate of the (uncoupled) standard map
(1), t is the global discrete time and [i] indexes the nodes (ki being a node’s
degree). The update of each node is the sum of a contribution given by the
update of the node itself (the ′ part) plus a coupling contribution given by the
sum of differences between the node’s x-value and the x-values of neighboring
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nodes in the previous iteration (for motivation behind this coupling form, see [1]).
We set the standard map chaotic parameter to ε = 0.9 and study the dynamics
of CMS (2) on a fixed scalefree-tree (visualized in Fig. 1b) for the fixed network
coupling strength μc = 0.012. The μc-value corresponds to the initial stability
phase transition for this CMS with all the orbits becoming periodic after a
sufficiently long transient, as shown in Fig. 1a for a shorter transient (see [1] for
details). As opposed to the previous works, the focus will be maintained on the
time-evolution of CMS (2) in relation to the initial conditions for a fixed μc,
rather then on the motion properties after transients for various μ-values.

We therefore investigate the time-sequence of 2 × N -dimensional vectors

{x[i]t, y[i]t} , i = 1, · · · , N (3)

in function of the discrete time t ≥ 0. The initial conditions are set by randomly
selecting the values (x[i]t=0, y[i]t=0) for each node [i] from (x, y) ∈ [0, 1]× [−1, 1].
Future iterations are computed according to (2) with the parameter constraints
described above. Updates of all the nodes are computed simultaneously for all the
network nodes. Besides considering the properties of a single node/single initial
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Fig. 1. (a) Fraction of non-periodic orbits for an outer tree’s node averaged over the
initial conditions after a transient of 105 iterations, (b) visualization of the tree studied
in this paper. Bright nodes reached the periodic orbits after a transient of 5 × 106

iterations for a random set of initial conditions (see Sect. 4.).

condition time-evolution sequence, we will also consider the quantities obtained
by averaging over the tree’s nodes, over the initial conditions or over the time-
evolution, as they can provide alternative qualitative/quantitative insights into
the time-evolution of the dynamics.
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3 The Average Orbit and the Dynamics Regularization

We begin the investigation of the general regularization properties of CMS (2)
by examining the time-evolution of the node-average orbit defined as:

(x̂t, ŷt) =
1
N

N∑

i=1

(x[i]t, y[i]t), (4)

and representing the medium node position (averaged over the whole network) at
each time-step. In Fig. 2 we show three stages of time-evolution of a generic node-
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Fig. 2. 1000 iterations of a node-average orbit of the CMS (2) for a random set of
initial conditions. (a) after 0, (b) after 5 × 104 and (c) after 5 × 105 iterations.

average orbit of (2). The initial chaotic cluster is divided into two smaller clusters
that shrink and eventually become a quasi-periodic orbit (in the sense of not re-
peating itself while being spatially localized) oscillating between the clusters, with
even and odd iterations belonging to the opposite clusters. The qualitative struc-
ture of this process is invariant under the change of the initial conditions.

We will use the clusterization of this motion to design a more quantitative
approach. Let us consider even and odd iterations of the node-average orbit
(x̂t, ŷt)even and (x̂t, ŷt)odd as two separate sequences. They evolve in the phase
space from initially being mixed together, towards each forming a separate clus-
ter that shrinks in size. The sum of cluster sizes divided by their distance gives a
good time-evolving measure of the motion’s ’regularity’; one expects this quan-
tity to decrease with the time-evolution, eventually stabilizing at some small
value (or possibly zero). To that end we fix a certain number of iterations τ
and coarse-grain the sequences by dividing them into intervals of length τ and
considering two sequences of clusters (given as points within each interval for
each sequence) instead. We compute the 2-dimensional standard deviations for
each pair of clusters σeven(T ) and σodd(T ), and measure the distance dc(T ) be-
tween their centers. These quantities depend on the coarse-grained discrete time
T given as the integer part of (t/τ). We define Σ(T ):
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Σ(T ) =
σeven(T ) + σodd(T )

dc(T )
, (5)

that quantifies the evolution of the cluster separation process as a function of
T . In Fig. 3a we show the behavior of Σ(T ) for three different sets of initial
conditions: for each plot there exist a critical time tc at which the node-average
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Fig. 3. (a) Evolution of Σ(T ) for three sets of initial conditions (in normal time t),
with time-window set to τ = 1000 iterations. (b) distribution of values of tc averaged
over 1000 random initial conditions, with log-normal tail fit.

dynamics suddenly ’regularizes’ into a stable steady state characterized by a
small Σ(T )-value that shows no further change with T . We term this collective
dynamical state as regular in the sense of constancy of Σ(T ) (Note: we use
the term ’regular’ only to make a clear distinction with the chaotic dynamics
preceding this state, while a discussion of the precise properties of regular state
will be given later). We emphasize that as this consideration is done using the
node-average orbit, the result is a global property of scalefree tree CMS (2). The
value of tc depends only on the initial conditions and it is given as the value of
T after which Σ(T ) remains constant.

In Fig. 3b we examine the distribution of tc-values over the initial conditions.
The distribution P (tc) presents a log-normal tail with a prominent peak at 〈tc〉 ∼=
2.79 × 105 iterations. Note that the value of 〈tc〉 is by construction independent
of the initial conditions and hence refers only to the network structure and the
coupling strength μc.

3.1 Properties of the Regular Dynamical State

The regular dynamics after tc is characterized by quasi-periodic oscillatory mo-
tion of each node between two clusters, in analogy with the node-average orbit.
All nodes however do not share the same clusters, but instead every node settles
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Fig. 4. A regular state of CMS (2) for a set of initial conditions after a transient of
500,000 iterations. (a) 10 iterations of all the nodes plotted in the same phase space,
(b) distribution of ȳ[i]-values for all the nodes computed over t1 − t0 = 1000 iterations.

to oscillate between a certain pair of clusters that are horizontally correspond-
ing to each other as illustrated in Fig. 4a. Every node therefore belongs to one
group of nodes oscillating between a common pair of clusters with a phase space
organization as in Fig. 4a (see [1]). Let the time-average orbit of a node averaged
over the time-interval (t0, t1) be defined as:

(x̄[i], ȳ[i]) =
1

t1 − t0

t=t1∑

t=tO

(x[i]t, y[i]t), (6)

which is a single phase space point that represents the node’s average position
during that time interval. In Fig. 4b we show the distribution of ȳ[i]-values for all
the nodes of a single regular state: sharp peaks indicate groups of nodes sharing
the same pairs of clusters and hence sharing the same ȳ[i]-value. Note that there
are 11 pairs of horizontally linked clusters on Fig. 4a, in correspondence with
the 11 peaks visible in Fig. 4b. The symmetry properties of this distribution are
invariant to the changes of the initial conditions.

4 Properties of the Periodic Dynamical State

Further evolution of any regular state eventually generates periodic orbits on all
the tree’s nodes under the dynamics of CMS (2). This is the final equilibrium
steady state of this system that undergoes no further changes, and will be called
the periodic state. While the regular state is defined only qualitatively by the
constancy of Σ(T ), the periodic state is precisely defined in terms of the peri-
odicity of orbits on all the nodes. Group phase space organization of the nodes
and their common oscillation properties described earlier (ȳ[i]-values, see Fig. 4)
still remain, with the periodic orbits replacing the quasi-periodic ones.
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Fig. 5. (a) Number of nodes with periodic orbits as function of time for three sets of
initial conditions, (b) histogram of period values (up to π = 3000) for a single periodic
state, (c) period distribution averaged over 20 periodic states, with slope of -2.24.

We describe the appearance of a periodic state in Fig. 5a: at each τ = 1000
iterations we check for nodes with the periodic orbits (for periods up to π = 105)
and report their number. As opposed to the case of a regular state (Fig. 3a),
the nature of the transition to a periodic state is not unique. As clear from
Fig. 5a besides a typical phase-transition (red), one can observe other phenomena
including a slowly evolving non-equilibrium steady state (light blue) that does
not reach an equilibrium state within 5 × 105 iterations (we analysed the states
of this sort concluding they do not reach equilibrium even within 107 iterations).
Note that a sort of double phase-transition is also possible (dark blue) as the
architecture of the tree may induce time scales into the regularization process.
in Fig. 1b shows a typical situation during the time-evolution: nodes achieve
periodic orbits starting from ones with lesser links away from the hub, but not
necessarily connected among them. Once the hub-node becomes periodic the
whole tree is in a dynamical equilibrium, but the path of this transition can be
diverse depending on the initial conditions.

4.1 Properties of the Periodic Dynamical State

The key property of a periodic state is that almost all the period values turn
out to be integer multiples of a given number. These base multiple numbers are
predominantly 240 (73% of initial conditions) or 48 (18% of initial conditions),
with others being 96, 480, 720 etc. This is illustrated in Fig. 5b where we show a
histogram of period values – almost all the nodes have periods that are multiples
of 240, with remaining nodes having periods multiples of 48. It is to be observed
that all the base multiple numbers mentioned above are all multiples of 48.
Furthermore, we computed the averaged distribution of period values (for 20
cases of multiples of 240) shown in Fig. 5c. The distribution exhibits a power-
law tail with an exponent of about -2.24, for periods up to π = 106.

These properties clearly indicate a presence of a self-organizational mechanism
behind the creation of the periodic state of CMS (2). The same base multiple
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numbers are involved in cases of periodic states obtained for this CMS with
other μ-values, but with a different ratio of their presence depending on the
initial conditions (generally, smaller the μ-value bigger the presence of larger
base multiple numbers). Note that the periodicity of mentioned node orbits
have no similarity with the periodic and quasi-periodic orbits known to exist
in standard map’s dynamics, as for this ε-value standard map shows only very
little isolated regularity (otherwise being strongly chaotic).

5 Conclusions

We examined the nature of the collective dynamics of CMS (2) with the fixed
coupling parameters ε = 0.9 and μc = 0.012 realized on a scalefree-tree, in terms
of its time-evolution and the properties of its emerging dynamical states. We
showed that for all the initial conditions dynamics becomes regular (in the sense
defined above) after a critical time tc. Also, for a majority of the initial condi-
tions dynamics reaches a final steady state characterized by the periodicity of
each node’s orbit. Curiously, almost all the period values happen to be integer
multiples of a given number that (depending on the initial conditions) varies
within a given set of numbers. Also, for the periodic states having the base mul-
tiple number 240 (the most frequent one), the period value distribution follows
a power-law with a tail slope of roughly -2.24.

Despite the oscillatory nature of emergent dynamics in many CMS known so
far (mainly 1D), period values structure of this sort does not seem to be observed
yet. We speculate that this self-organization feature might owe its origin to the
time delayed structure of the coupling, and the nature of the standard map: once
a node achieves a periodic orbit, its neighbours ought to do the same, inducing
the correlation in the period values.

Open questions include network organization of periodic states in terms of
period–node relationship, as well as investigation of the steady states of this CMS
realized with different networks. It might be also interesting to study similar
CMS with time-delays that vary throughout the network in a way to model
a given naturally occurring behaviour. Of particular interest might also be the
investigation of the non-equilibrium steady state mentioned in Fig. 5a (light blue)
from a statistical point of view.
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17. Levnajić, Z., Tadić, B.: Dynamical patterns in scalefree trees of coupled 2d chaotic
maps. In: Shi, Y., van Albada, G.D., Dongarra, J., Sloot, P.M.A. (eds.) ICCS 2007.
LNCS, vol. 4488, pp. 633–640. Springer, Heidelberg (2007)

18. Ramaswamy, R.: Synchronization of strange nonchaotic attractors. Physical Re-
view E 56(6), 7294 (1997)


	Introduction
	Coupled Map System Set-Up on a Scalefree Tree
	The Average Orbit and the Dynamics Regularization
	Properties of the Regular Dynamical State

	Properties of the Periodic Dynamical State
	Properties of the Periodic Dynamical State

	Conclusions


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice


